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INCREASE IN WATER-HAMMER PRESSURE IN A PIPE IN THE PRESENCE OF 

A LOCALIZED VOLUME OF GAS 

S. P. Aktershev and A. V. Fedorov UDC 532.595.2+532.595.7 

In different areas of use of piping systems, situations are often encountered whereby 
localized volumes of gas co-exist with the liquid in the pipe. The presence of the gas 
cavities may have a significant effect on the character of various transients in the pipe- 
line [i-8]. Gas cavities may compensate for pressure fluctuations [2] or, conversely, may 
increase the maximum pressure in the pipe [3, 4]. The exact role played by the cavities de- 
pends on the parameters of the system and the method of organization of the nonsteady flow. 
As is known [i], the air chamber installed in the delivery line immediately after a pump 
reduces the pressure jump which occurs when the pump is started. On the other hand, when a 
capped pipe is filled with liquid, the presence of gas may lead to a water hammer of con- 
siderable magnitude [3]. The presence of air at the end of a delivery line with a closed 
valve may also result in large pressure fluctuations when the pump is quickly turned on [4]. 

The pressure-testing of a pipeline filled with a viscous liquid and provided with an 
air chamber (Fig. i) was studied experimentally in [5] for large values of friction at the 
point of attachment of the chamber to the line. Valve A, connecting the line, under the 
pressure P0, with a tank under constant pressure Pl > P0, was quickly opened at the initial 
moment of time. The air chamber was designed to damp the attendant pressure oscillations. 
The experimental data was compared with the results of numerical calculations. It was found 
that the maximum pressures were 1.5-1.8 times higher within a certain range of volumes of 
air in the chamber than in the absence of air. The results of the numerical calculations 
were used to determine the maximum permissible diameter of chamber throat that would ensure 
damping of pressure oscillations by the chamber for a specified volume of air. 

Here we also examine the problem of the pressure-testing of a pipeline with a gas cavity. 
However, we will use small values of friction and assume that friction is concentrated in the 
initial section of the pipe (valve resistance). The effect of the volume of the gas cavity on 
the maximum pressures in the pipeline is studied both by a numerical method and within the 
framework of a simplified mathematical model proposed below. 

Formulation of the Problem. The flow of liquid in the pipe is described by hydraulic 
equations [i] which appear as follows in the dimensionless variables p = P/Pl, u = p0cu/pl, 

Here, p, u, Pc, x, t are the dimensionless pressure, velocity, and density of the liquid, the 
longitudinal coordinate, and time; D, L, c are the diameter and length of the pipe and the 
rate of propagation of perturbations in the pipe when it is filled with liquid; X is the co- 
efficient of friction against the wall. We assume that X is constant, which is valid for 
Reynolds numbers Be~>105 [9]. 
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In the section in which the gas cavity is located, we write the equation describing the 
change in the volume of gas 

= - 

where V is the gas volume; 20 is the cross-sectional area of the pipe; u-, ~+ are the veloc- 
ities of the liquid to the left and right of the cavity. The compression of the gas volume 
is assumed to be adiabatic pV~ = p0V~. From here, we obtain a relation for u-, u+, dp/dt 
which takes the following form in dimensionless variables 

In the i n i t i a l  section of the pipe, the dimensionless pressure and velocity are connected 
by the relation 

t - -  p = ~ ( p , / 2 p ~ ' ) u l u l .  (3)  

Here, 5 (the friction coefficient of the valve [19]) is also assumed to be constant. 

In the final section of the pipe 

u ( t ,  t) = O. ( 4 )  

The initial conditions in the pipe: 

u(x,  O) = O, p (x ,  O) = po., P0 = P0/Pl .  ( 5 )  

We used t he  method of  c h a r a c t e r i s t i c s  [10] t o  s o l v e  (1)  w i th  boundary and i n i t i a l  con-  
d i t i o n s  (3)-(5). Here, conditions (2)-(4) were augmented by relations for the characteristics 
in the corresponding sections. 

Some Results of the Calculations. Calculations were performed for a pipe filled with 
water (C = 1370 m/sec, po = 103 kg/m a) under a pressure P0 = 0.i MPa and having an air chamber 
(y = 1.4) at its end (i/~ = 0.96), with L/D = i00, X = 0.02, ~ = 0.4; I, 2. 

Figure 2 shows the dependence of the pressure in the gas cavity on time for P0 = 0.I, 
V0/f0L = I0 -~, ~ = i. As is known [i], in the absence of gas, the maximum inertial increase 
in pressure in the pipe will be equal to 2(1 - P0) if we ignore the losses. The period of 
the oscillations will be four wavelengths, as illustrated by the dashed line in Fig. 2. It 
is evident that in the presence of a gas cavity, pressure peaks of great amplitude are real- 
ized. 

Here, the pressure in the first peak Pm and the period of the oscillations (the inter- 
val between successive peaks) depends appreciably on the initial volume of the gas. Figure 
3 shows the results of calculations for p = 0.I, V0/f0L = i0 -z, ~ = 2. The pressure in the 
first peak is more than 10 times the pressure in the tank. The pressure reduction in subse- 
quent pulses is determined by the friction losses ~ and XL/D. 

The same pressure oscillations take place in the pipe sections next to the gas cavity 
(the maximum pressure is reachedin the end section). This phenomenon of the amplification 
of water-hatmner pressure due to the presence of a gas volume in a pipe can be used in equip- 
ment to develop impulsive jets (in the cutting of metal by a fluid jet, in monitors for ex- 
cavating mineral deposits, etc.) and to test containers under high-pressure [II, 12]. 
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Model of a Rigid Piston. We will examine a simplified mathematical model to analyti- 
cally describe the problem being studied here. 

The liquid in the pipe is assumed to be incompressible and is regarded as a rigid piston. 
Here, the velocity of the liquid is the same in all sections of the pipe. Thus, we ignore 
the time of propagation of disturbances over the pipeline. Ignoring the compressibility of 
the liquid and the compliance of the pipe wall compared to the compressibility of the gas 
is valid under the condition that the characteristic time of the process is much greater 
than the time it takes for a wave to travel over the pipeline. 

Let the gas cavity be located at the end of the pipe (s = L), u is the velocity of the 
column of liquid and ~ is the pressure in the gas cavity (see Fig. I). With allowance for 
the pressure loss at the pipe inlet and friction against the wall, we write the equation 
of motion of the liquid piston as follows 

while the change in the volume of the gas 

d~7/d~ = --~"~,  

and the adiabatic compression of the gas 

= 

Excluding the volume V, we obtain two equations for ~ and ft. Ignoring the dimensionless 
variables, we can write these equations in the form 

d u / d t  = t - -  p - -  kulul , :  dp /d t  = ~ u p  (z+~)tv~, ( 6 )  

where k= ~+-=- $•z, z---- ___ F0P0 c2 \~7 * These equations can be integrated by numerical 

methods with the initial data p(0) = P0, u(0) = 0. We will analyze (6) for the case of the 
absence of loss (k = 0) and we will linearize (6) near the stationary point p = i, u = 0, 
having put p = 1 + p' = u' , u (p' and u are small quantities). For p' we obtain the equa- 
tion of harmonic vibrations with the period 

2" = 2 = / V ~ .  ( 7 ) 

This result coincides with the result obtained in [8] for small oscillations in a pipeline 
with a gas compensator. 

The oscillatory character of the process is due to the inertia of the liquid and the 
presence of the gas cavity. After the valve is opened, the pressure in the tank forces the 
column of liquid to the right (see Fig. I) and compresses the gas, which acts as an elastic 
spring. Due to the inertia of the liquid, the equilibrium position "jumps" (when the gas 
pressure is comparable to the pressure at the pipe inlet), and the gas is compressed to Pm > 
1 by the time the liquid decelerates completely. In the absence of a gas cavity, the entire 
liquid acquires the velocity (i - P0) during one passage of the wave over the length of the 
pipeline. The column is then slowed by the wave as it is reflected from the closed end of the 
the line [i]. In the case being studied here (presence of gas), the liquid is accelerated 
for a much longer period of time and thus acquires a much greater velocity during accelera- 
tion. Consequently, when it is slowed, the pressure created is greater by a factor of 2(1 - 
P0) than the pressure attained in the absence of the gas. 

We obtain the pressure Pm in the first peak from (6) for k ~ O, having examined the 
motion of the liquid at u~ O. Introducing the new variables z = (i/,* y = u2/2 and excluding 
the time t, we have 

e= By=~ lv I ~=ik~ 
- , ~ ( 8 )  

We w r i t e  t h e  s o l u t i o n  o f  ( 8 ) ,  w i t h  t h e  i n i t i a l  c o n d i t i o n s  y ( z o ) =  0 (zo = ( I /Po)1 /~ ) ,  i n  t h e  
form 

*Expression missing in Russian original - Publisher. 
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I t  i s  n o t  h a r d  t o  show t h a t  t h e  f u n c t i o n  y ( z )  v a n i s h e s  a t  t h e  p o i n t  z m < 1, y ( z  m) = O, i s  
n o n n e g a t i v e  on t h e  i n t e r v a l  (z  m, z 0 ) ,  and h a s  i t s  maximum in  t h i s  i n t e r v a l .  Hav ing  d e t e r m i n e d  
Zm, we find Pm = i/z~. 

Hydraulic losses of pressure at pipe inlet and friction losses on the wall, accounted 
for in the first equation of (6) by the coefficient k, compensate partially for the inertia 
of liquid piston and thereby reduce the magnitude of the water hammer. Let us evaluate the 
time for piston velocity to relax to the steady-state value as a result of the losses, as- 
suming in (6) that u~0 and that the gas pressure is constant [p(t) = P0]. 

The solution of the equation du/dt = 1 - P0 - ku2, with the initial condition u(0) = 0, 

(e,/~_ ~ 
will be u(t)-~u*iet/-7?-~i j. Here, ~= I/[2~ k(i--p0)] is the relaxation time; u* = ~(i--po)Ik 

is the steady-state velocity at which the inertial term vanishes. If the characteristic 
time of the change in gas pressure T ~ T, then there will not be sufficient time for the 
velocity of the liquid to "adjust" to the current value of pressure. The value of ~/T de- 
creases with an increase in the volume of the gas 00. Thus, friction losses play a more 
substantial role for large relative volumes V0/f0L in the liquid piston model. 

Comparison of Results Calculated by the Method of Characteristics and from the Piston 
Model. Figure 4 shows the relations pm(90/~0s for P0 = O.i calculated by the method of 
characteristics (solid lines 1-3 for $ = 0.4, i, and 2) in comparison with results calculated 
using the piston model (9) (dashed lines). It is evident that with an increase in gas volume 
the value of Pm calculated by the characteristics method initially increases (the effect of 
air on the water hammer increases) and then decreases due to,intensification of the effect 
of friction losses. Thus the most critical volume of gas Q0 for the water hammer (and 
optimal for obtaining impulse pressure) is determined by friction losses. In the case of 
large volumes the air chamber damps pressure oscillations. 

With smail volumes (V0/f0L < 10-2), the same value of Pm is obtained for different 
because the characteristic time of~pressure build-up is fairly small and the effect of fric- 
tion losses is insubstantial. At V0/f0L > 0.8, the piston model agrees adequately with the 
characteristics method in terms of Pm" It can be seen from Fig. 4 that the piston model is ~, 
invalid at V0 ~ Vo, when the characteristic time of the process becomes comparable to the 
time required for the wave to travel the length of the pipeline. 

Figure 5 shows the dependence of the pressure in the gas cavity on time, calculated by 
the characteristics method and from Eq. (6) (curves 1 and 2) for P0 = 0.i, v0/f0i = 0.3, 

Thus, we studied the process of pressure oscillation in a liquid-filled pipe containing 
a gas cavity in the case of small values of system friction. We determined the critical 
volume of gas at which the increase in pressure associated with water hammer is greatest. 
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NUMERICAL INVESTIGATION OF THE PROCESS OF SHOCK REFLECTION 

FROM A WALL WITH A SLOT HOLE 

A. B. Britan, A. Ya. Rudnitskii, 
and A. M. Starik 

UDC 533.6.07 

The motion of shocks in channels of variable section is an important, hardly studied 
phenomenon that is utilized extensively in industrial technology, aerophysical experiment 
practice, and also in laboratory investigations utilizing shock tubes [I]. 

In the simplest case when two rectilinear channels of differing transverse dimensions 
are connected by a junction with a smooth change in section, analysis of the flow on both 
sides of the junction is ordinarily conducted within the framework of the quasistationary 
one-dimensional stream model [2-4]. In particular, for a channel with diminution of the 
cross-sectional area A quasistationary theory predicts four possible modifications of the 
flow wave structure, displayed schematically in the upper part of Fig. i. Since the flow 
in the junction itself is not considered, the function is replaced by a discontinuity in the 
junction diagrams, at which the incident shock arrives from the left (the solid heavy lines 
are shock trajectories in space-time coordinates). The mode i with a reflected and passed 
shock between which the space is separated by a contact surface (its trajectory is shown by 
dashed lines in the diagrams) is realized for a subsonic stream velocity. As the incident 
shock intensity increases a nonstationary rarefaction wave (dash-dot) appears in the stream 
and accelerates the stream behind the passed wave to a supersonic velocity, mode 2. The 
reflected shock attenuates for small channel contractions and sufficiently high gas veloc- 
ities, it ceases to move upstream, mode 3, and degenerates in the long run into a weak dis- 
turbance, mode 4 [2, 4]. The flow wave structure in mode 4 is determined by the passed shock 
and the rarefaction wave. 
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